Section 4.1, Problem 16: $f(x)=\sqrt{x+1}$ and $g(x)=3 x$, so
(a) $(f \circ g)(4)=f(g(4))=f(12)=\sqrt{13}$
(b) $(g \circ f)(2)=g(f(2))=g(\sqrt{3})=3 \sqrt{3}$
(c) $(f \circ f)(1)=f(f(1))=f(\sqrt{2})=\sqrt{\sqrt{2}+1}$
(d) $(g \circ g)(0)=g(g(0))=g(0)=0$.

Section 4.1, Problem 72: We are given that the demand equation for a firm's commodity

$$
p=-\frac{1}{5} x+200, \quad 0 \leq x \leq 1000
$$

and the firm's cost function

$$
C=\frac{\sqrt{x}}{10}+400
$$

where x is the number of items produces, $C(x)$ is the cost of producing x items and p is the price the firm sets for the commodity.
We are asked to find the cost C as a function of the price p. This is done in two steps.
First we solve the demand equation for x in terms of p :

$$
p=-\frac{1}{5} x+200 \quad \xrightarrow{\times 5} \quad 5 p=-x+1000 \quad \xrightarrow{+x-5 p} \quad x=-5 p+1000 .
$$

Then we plug this expression for x into the cost function:

$$
C=\frac{\sqrt{x}}{10}+400=\frac{\sqrt{-5 p+1000}}{10}+1000 .
$$

Section 4.2, Problem 62: We are asked to find the inverse function of $f(x)=\frac{4}{2-x}$. To do this, we first solve the equation

$$
y=\frac{4}{2-x}
$$

for the variable x in terms of y :

$$
y=\frac{4}{2-x} \xrightarrow{\text { flip both sides }} \frac{1}{y}=\frac{2-x}{4} \quad \xrightarrow{\times 4} \quad \frac{4}{y}=2-x \quad \xrightarrow{+x-4 / y} \quad x=2-\frac{4}{y}
$$

Then we swap the roles of x and y and write $f^{-1}(x)=2-\frac{4}{x}$.
Check:

$$
f^{-1}(f(x))=2-\frac{4}{\frac{4}{2-x}}=2-4 \cdot \frac{2-x}{4}=2-(2-x)=x \checkmark
$$

and

$$
f\left(f^{-1}(x)\right)=\frac{4}{2-\left(2-\frac{4}{x}\right)}=\frac{4}{4 / x}=4 \cdot \frac{x}{4}=x \checkmark
$$

Section 4.3, Problem 106. The population $P(t)$ at time t in years of an endangered species is given by

$$
P(t)=30(1.149)^{t}
$$

The answers below are rounded to the nearest integer.
(a) The initial population is $P(0)=30$.
(b) The population after 5 years will be $P(5)=30(1.149)^{5} \approx 60$.
(c) The population after 10 years will be $P(10)=30(1.149)^{10} \approx 120$.
(d) The population after 15 years will be $P(15)=30(1.149)^{15} \approx 241$.
(e) The population approximately doubles every 5 years (because $(1.149)^{5} \approx 2$).

