Section 3.2, Problem 52:

If p / q is a rational zero of the polynomial

$$
f(x)=2 x^{4}-x^{3}-5 x^{2}+2 x+2,
$$

then p must be a divisor of the constant coefficient 2 , and q must be a divisor of the leading coefficient, which is also 2 . I.e., $p= \pm 1, \pm 2$ and $q= \pm 1, \pm 2$, which means that the possible rational zeros are

$$
\frac{p}{q}= \pm 1, \pm 2 \text { and } \pm \frac{1}{2} .
$$

Now we test the candidates:

$$
f(1)=0 \checkmark, f(-1)=-2, f(2)=10, f(-2)=18, f(1 / 2)=\frac{7}{4} \text { and } f(-1 / 2)=0 \checkmark
$$

This means that $x=1$ and $x=-1 / 2$ are the rational zeros of $f(x)$.
Next we use this information to factor $f(x)$. We know that $(x-1)$ and $\left(x+\frac{1}{2}\right)$ are both factors of $f(x)$, so $f(x)=(x-1)\left(x+\frac{1}{2}\right) g(x)$, and since f has degree 4, it follows that g must have degree 2, i.e., $g(x)=a x^{2}+b x+c$. This means that

$$
\begin{aligned}
2 x^{4}-x^{3}-5 x^{2}+2 x+2 & =(x-1)\left(x+\frac{1}{2}\right)\left(a x^{2}+b x+c\right) \\
& =\left(x^{2}-\frac{1}{2} x-\frac{1}{2}\right)\left(a x^{2}+b x+c\right) \\
& =a x^{4}+\left(b-\frac{1}{2} a\right) x^{3}+\left(c-\frac{1}{2} a-\frac{1}{2} b\right) x^{2}-\frac{1}{2}(b+c) x-\frac{1}{2} c .
\end{aligned}
$$

Comparing coefficients, of the two degree four polynomials, we have

$$
a=2, b-\frac{1}{2} a=-1, c-\frac{1}{2}(a+b)=-5,-\frac{1}{2}(b+c)=2 \text { and }-\frac{1}{2} c=2 .
$$

This means that $a=2$ and $c=-4$, from which it follows that $b=0$, so

$$
g(x)=\left(2 x^{2}-4\right)=2\left(x^{2}-2\right)=2(x-\sqrt{2})(x+\sqrt{2})
$$

and $f(x)$ factors as

$$
f(x)=2(x-1)\left(x+\frac{1}{2}\right)(x-\sqrt{2})(x+\sqrt{2})
$$

Section 3.4, Problem 54:

The degree of the numerator $p(x)=x^{4}-16$ is 2 more than the degree of the denominator $q(x)=x^{2}-2 x$, so the rational function

$$
F(x)=\frac{x^{4}-16}{x^{2}-2 x}
$$

does not have an oblique or horizontal asymptote.
Next, factoring the numerator and the denominator, we have

$$
x^{4}-16=\left(x^{2}-4\right)\left(x^{2}+4\right)=(x-2)(x+2)\left(x^{2}+4\right) \text { and } x^{2}-2 x=x(x-2)
$$

so the reduced form of $F(x)$ is

$$
F_{r}(x)=\frac{(x-2)(x+2)\left(x^{2}+4\right)}{x(x-2)}=\frac{(x+2)\left(x^{2}+4\right)}{x}
$$

which means that the graph $y=F(x)$ has one vertical asymptote, $x=0$ (and a hole at $(2,16)$).
Conclusion: No horizontal or oblique asymptotes and one vertical asymptote, $x=0$.

Figure 1: The graph of $F(x)=\frac{x^{4}-16}{x^{2}-2 x}$

Section 3.5, Problem 8: Analyzing the graph of $R(x)=\frac{x}{(x-1)(x+2)}$.
Step 1. $R(x)$ is already factored above. The domain of $R(x)$ is $\{x \mid x \neq 1,-2\}$.
Step 2. $R(x)$ is already in lowest terms (i.e., the numerator and denominator don't have any common factors).
Step 3. $R(x)$ has one zero, at $x=0$, i.e., $R(0)=0$. This is both the (only) x-intercept and the y-intercept. Since x appears to an odd power in, the graph of $R(x)$ crosses the x-axis at this point.

Step 4. $R(x)$ has the lines $x=1$ and $x=-2$ as vertical asymptotes.
(i) To the left of $x=-2, x<0, x-1<0$ and $x+2<0$, so $R(x)<0$ to the left of $x=-2$, and therefore $R(x) \rightarrow-\infty$ on the left side of the asymptote $x=-2$.
(ii) To the (immediate) right of $x=-2, x<0, x-1<0$ and $x+2>0$, so $R(x)>0$ to the right of $x=-2$, and therefore $R(x) \rightarrow+\infty$ on the right side of the asymptote $x=-2$.
(iii) To the (immediate) left of $x=1, x>0, x-1<0$ and $x+2>0$, so $R(x)<0$ to the left of $x=1$, and therefore $R(x) \rightarrow-\infty$ on the left side of the asymptote $x=1$.
(iv) To the (immediate) right of $x=1, x>0, x-1>0$ and $x+2>0$, so $R(x)>0$ to the right of $x=1$, and therefore $R(x) \rightarrow+\infty$ on the right side of the asymptote $x=1$.

Step 5. The degree of the numerator is less than the degree of the denominator, so $y=0$ (the x-axis) is a horizontal asymptote to the graph of $R(x)$. As we already saw in Step 3., the graph intersects the x-axis at the origin and nowhere else.

Step 6. The zeros of the numerator and denominator are $x=-2, x=0$ and $x=1$, so the intervals we have to consider are $(-\infty,-2),(-2,0),(0,1)$ and $(1, \infty)$.

- $R(-3)=-\frac{3}{4}<0$, so $R(x)<0$ in $(-\infty,-2)$.
- $R(-1)=\frac{1}{2}>0$, so $R(x)>0$ in $(-2,0)$.
- $R(1 / 2)=-\frac{2}{5}<0$, so $R(x)<0$ in $(0,1)$.
- $R(2)=\frac{1}{2}>0$, so $R(x)>0$ in $(1, \infty)$.

Step 7. Comment: The horizontal asymptote is not dashed because it is also an axis.

Figure 2: The graph of $R(x)=\frac{x}{(x-1)(x+2)}$

