Section 2.3, problem 28:

$$
\begin{gathered}
G(x)=0 \Longrightarrow(x+2)^{2}-1=0 \Longrightarrow(x+2)^{2}=1 \Longrightarrow x+2= \pm \sqrt{1}= \pm 1 \\
x+2=-1 \Longrightarrow x=-3 \quad \text { or } \quad x+2=1 \Longrightarrow x=-1 .
\end{gathered}
$$

Conclusion: the zeros of $G(x)=(x+2)^{2}-1$ are $x=-3$ and $x=-1$ and these are also the x-intercepts of the function.

Section 2.3, problem 102: The area of the rectangular window is 306 and the dimensions of the window are x centimeters (width) and $x+1$ centimeters (length). This leads to the equation

$$
x(x+1)=306 \Longrightarrow x^{2}+x-306=0 \Longrightarrow(x+18)(x-17)=0 \Longrightarrow x=-18 \text { or } x=17 \text {. }
$$

The negative solution $(x=-18)$ doesn't make sense as a width, so the width of the window is $x=17$ and its length is $x+1=18$.

Section 2.4, problem 72: Find the quadratic function $f(x)$ by using the form

$$
f(x)=a(x-h)^{2}+k
$$

where (h, k) is the vertex. Now use the data to solve for a, h and k.
(i) We know that the vertex in this case is $(1,4)$, so $h=1$ and $k=4$. This means that

$$
f(x)=a(x-1)^{2}+4
$$

and it remains to find a.
(ii) We also know that the graph passes through the point $(-1,-8)$, and this means that $f(-1)=-8$ and therefore

$$
a(-1-1)^{2}+4=-8 \Longrightarrow 4 a+4=-8 \Longrightarrow 4 a=-12 \Longrightarrow a=-3 .
$$

Conclusion: $f(x)=-3(x-1)^{2}+4=-3\left(x^{2}-2 x+1\right)+4=-3 x^{2}+6 x+1$.
Section 2.6, problem 10: Label the width of the rectangle with x and the length of the rectangle by y. If we think of y as the length of the side parallel to the river and x the length of the side perpendicular to the river, then the total amount of fencing is $2 x+y$ and therefore

$$
2 x+y=2000 \Longrightarrow y=2000-2 x
$$

The area of the rectangular field is $x y$, and since $y=2000-2 x$ we can express this as a function of x alone:

$$
A(x)=x(2000-2 x)=-2 x^{2}+2000 x
$$

The maximum value of the area occurs at the vertex of this quadratic function

$$
x_{v}=-\frac{b}{2 a}=-\frac{2000}{-4}=500 .
$$

In words, the area is maximized when the width is $x=500$ meters and the length is $y=$ $2000-2 \cdot 500=1000$ meters. The maximum area is $500 \cdot 1000=500,000$ square meters.

