## Section 1.5, problem 8: E.

The Graph

is the graph of the quadratic function $y=x^{2}$ shifted two units to the right, so it is the graph of the function $y=(x-2)^{2}$, which is function E .

Section 1.5, problem 20: $y=(x+4)^{3}$.

Section 1.6, problem 18: $d(t)=50 t$.
Explanation: We will use the variable $t$ to measure time in hours. At time $t=0$, the two cars are at the same intersection, which you can think of as the origin of a set of axes.
At time $t>0$, the south-going car has traveled $30 t$ miles (because it is traveling at the constant speed of 30 mph ) and the west-going car has traveled $40 t$ miles (because it is traveling at the constant speed of 40 mph ).


This places the westbound car at the point $(-40 t, 0)$ on the horizontal axis of our hypothetical coordinate system and the southbound car at the point $(0,-30 t)$ on the vertical axis of this coordinate system (see figure above). The distance $d(t)$ between these two points is found using the distance formula:

$$
d(t)=\sqrt{(-40 t)^{2}+(-30 t)^{2}}=\sqrt{2500 t^{2}}=50 t
$$

Section 2.1, problem 52: See Example 5 in the section for details on how to work this out.
(a) $V(x)=120,000-12,000 x$.
(b) The implied domain is $[0,10]=\{x \mid 0 \leq x \leq 10\}$.
(c)

(d) $V(4)=120000-48000=72000$.
(e) After 4 years (see (d)).

