Section 1.1, problem 54: corrected!

The domain of the function $G(x)=\frac{x+4}{x^{3}-4 x}$ is $\{x: x \neq-2,0,2\}$
(because $x^{3}-4 x=x\left(x^{2}-4\right)=0$ if $x=-2, x=0$ or $x=2$)

Section 1.2, problem 42:

(a) The temperature of a bowl of soup as a function of time - graph II.
(b) The number of hours of daylight per day over a two-year period - graph V.
(c) The population of Texas as a function of time - graph $I V$.
(d) The distance traveled by a car going at a constant velocity as a function of time - graph III.
(e) The height of a golf ball hit with a 7 -iron as a function of time - graph I.

Section 1.3, problem 34:

If $f(x)=2 x^{4}-x^{2}$, then

$$
f(-x)=2(-x)^{4}-(-x)^{2}=2(-1)^{4} x^{4}-(-1)^{2} x^{2}=2 x^{4}-x^{2}=f(x)
$$

(because $(-1)^{4}=(-1)^{2}=1$) so this function is even.

Section 1.3, problem 68:

We have $g(x)=x^{2}+1$, so...
(a) The average rate of change from $x=-1$ to $x=2$ is

$$
\frac{g(2)-g(-1)}{2-(-1)}=\frac{5-2}{2+1}=1 .
$$

(b) The secant line connecting the points $(-1, g(-1))$ and $(2, g(2))$ has slope $m=1$ (the average rate of change from (a)), and passes through the point $(-1, g(-1))$. We find its equation using the point-slope formula:

$$
y-g(-1)=m(x-(-1)) \Longrightarrow y-2=1(x+1) \Longrightarrow y=x+3
$$

