Analyzing (another) rational function: $f(x)=\frac{x^{3}-3 x+2}{2 x^{3}-4 x^{2}-2 x+4}$
(1a) Factoring denominator:

$$
\begin{aligned}
2 x^{3}-4 x^{2}-2 x+4 & =2\left(x^{3}-2 x^{2}-x+2\right) \\
& =2\left(x^{2}(x-2)-(x-2)\right) \\
& =2\left(x^{2}-1\right)(x-2)=2(x-1)(x+1)(x-2)
\end{aligned}
$$

(1b) Factoring numerator: not so easy. On the other hand, by inspection $x=1$ is a zero of $p(x)=x^{3}-3 x+2$, which means that $(x-1)$ is a factor of $p(x)$, so we can write

$$
\begin{gathered}
x^{3}-3 x+2=(x-1)\left(x^{2}+b x+c\right)=x^{3}+(b-1) x^{2}+(c-b) x-c \\
\Longrightarrow c=-2 \text { and } b=1
\end{gathered}
$$

I.e.,

$$
x^{3}-3 x+2=(x-1)\left(x^{2}+x-2\right)=(x-1)(x-1)(x+2)
$$

Factored form of $f(x)$ :

$$
f(x)=\frac{x^{3}-3 x+2}{2 x^{3}-4 x^{2}-2 x+4}=\frac{(x-1)(x-1)(x+2)}{2(x-1)(x+1)(x-2)} .
$$

(2) Domain of $f(x):\{x \mid x \neq 1,-1,-2\}$.

Observation: The factor $(x-1)$ appears both in the numerator and the denominator...
(3) Reduced form of $f(x)$ :

$$
\begin{aligned}
f(x)= & \frac{(x-1)(x-1)(x+2)}{2(x-1)(x+1)(x-2)}=\frac{(x-1)(x+2)}{2(x+1)(x-2)}=f_{r}(x) \\
& \Rightarrow f(x)=f_{r}(x) \text { at every point } x \neq 1
\end{aligned}
$$

The graph of $f(x)$ has a 'hole' at $x=1$ :


Zeros. The zeros of $f_{r}(x)$ are $x=1$ and $x=-2$, but $f(x)$ is not defined at $x=1$, so technically, $f(x)$ has only one zero, at $x=-2$. (We do consider $x=1$ as a point where $f(x)$ may change sign, however).

Vertical asymptotes. These may occur at points where the function is not defined. There are three points to consider.
(*) At $x=-1$, the numerator of $f(x)$ is $4 \neq 0$ while the denominator is 0 , so the line $x=-1$ is a vertical asymptote.
$\left(^{*}\right)$ At $x=1$, the reduced from $f_{r}(x)$ is defined at $x=1\left(f_{r}(1)=0\right)$, so there is no vertical asymptote there - we already know that there is a hole in the graph at this point.
$\left(^{*}\right)$ At $x=2$, the numerator of $f(x)$ is $2 \neq 0$ and the denominator is 0 , so the line $x=2$ is a vertical asymptote.

Horizontal asymtote. The numerator and denominator of $f_{r}$ have the same degree, 2 , so there is a horizontal asymptote. If $|x|$ is large, then

$$
f_{r}(x)=\frac{x^{2}+x-2}{2 x^{2}-2 x-4} \approx \frac{x^{2}}{2 x^{2}}=\frac{1}{2}
$$

so the horizontal asymptote is the line $y=\frac{1}{2}$.


Asymptotes, zeros, $y$-intercept $(=1 / 2)$ and the hole at $x=1$.

## Signs.

The sign of $f(x)$ can only change at: -2 (a zero); -1 (vertical asymptote); 1 (hole in the graph); 2 (vertical asympote).
$\Rightarrow$ Sample $f_{r}(x)$ in the intervals...
$\left.{ }^{*}\right)(-\infty,-2): f_{r}(-3)=4 / 20>0$
$\left(^{*}\right)(-2,-1): f_{r}(-1.5)=(-1.75) / 2.5<0$
$\left.{ }^{*}\right)(-1,1): f(0)=1 / 2>0$
${ }^{(*)}(1,2): f_{r}(1.5)=1.75 /(-2.5)<0$
$\left.{ }^{*}\right)(2, \infty): f_{r}(100) \approx 1 / 2>0$.

Signs in each interval



