Rational functions

Definition: A rational function is the quotient of two polynomials:

$$
f(x)=\frac{a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}}{b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}}=\frac{p(x)}{q(x)} .
$$

Examples:
$f(x)=\frac{3 x+2}{4 x^{3}+5 x^{2}-1}, \quad g(x)=\frac{x^{2}+x-2}{5 x+3} \quad$ and $\quad h(x)=\frac{2 x^{2}+1}{3 x^{2}+4 x+1}$.
Important characteristics:
(a) Domain of definition.
$(\mathrm{a}) \Rightarrow$ behavior near points where the function is undefined.
(b) Zeros.
(a) and (b) \Rightarrow intervals where the function is positive and negative.
(c) End behavior (as $x \rightarrow \pm \infty$).

Domain of defintion.

(*) Polynomials are defined on the entire real line.
${ }^{(*)}$ Quotients are defined wherever the denominator is not zero.
Conclusion: The rational function $y=\frac{p(x)}{q(x)}$ is defined at all points where $q(x) \neq 0$.

Example. Find the domain of

$$
h(x)=\frac{2 x^{2}+1}{3 x^{2}+4 x+1}
$$

$\left(^{*}\right)$ Zeros of $3 x^{2}+4 x+1=(3 x+1)(x+1): x_{1}=-1$ and $x_{2}=-1 / 3$.

$$
\Rightarrow \operatorname{Domain}(h(x))=\{x \mid x \neq-1 \text { and } x \neq-1 / 3\} .
$$

Behavior near points where the rational function is undefined.
$\left(^{*}\right)$ If $q(a)=0$, so $f(x)=p(x) / q(x)$ is undefined at $x=a$, then $f(x)$ will usually tend to $\pm \infty$ as x gets closer to a.
Example. The function $h(x)=\frac{2 x^{2}+1}{3 x^{2}+4 x+1}$ is not defined at $x=-1$.
$\left.{ }^{*}\right)$ The numerator, $2 x^{2}+1>0$ for all x.
${ }^{(*)}$ The denominator, $3 x^{2}+4 x+1>0$ if $x<-1$ or $x>-1 / 3$
$\Rightarrow h(x)>0$ if $x<-1$ or $x>-1 / 3$
$\left(^{*}\right) 3 x^{2}+4 x+1<0$ if $-1<x<-1 / 3$.
$\Rightarrow h(x)<0$ if $-1<x<-1 / 3$.
Conclusions:
$\left(^{*}\right)$ If $x \approx-1$ and $x<-1$, then $h(x)>0$ and $|h(x)|$ is very large

$$
\Rightarrow h(x) \rightarrow+\infty \text { to the left of }-1
$$

${ }^{(*)}$ If $x \approx-1$ and $x>-1$, then $h(x)<0$ and $|h(x)|$ is very large

$$
\Rightarrow h(x) \rightarrow-\infty \text { to the right of }-1 .
$$

In the vicinity of $x=-1$, the graph of $y=h(x)$ looks like this:

In the vicinity of $x=-1$, the graph of $y=h(x)$ looks like this:

The line $x=-1$ is called a vertical asymptote to the graph $y=h(x)$. $\left(^{*}\right)$ The graph of a rational function cannot cross a vertical asymptote.

A similar analysis shows that $h(x) \rightarrow+\infty$ to the right of $-1 / 3$ and $h(x) \rightarrow-\infty$ to the left of $-1 / 3$. In the vicinity of $x=-1 / 3$, the graph of the function $y=h(x)$ looks like this:

The line $x=-1 / 3$ is another vertical asymptote to the graph $y=h(x)$.

Zooming out a little, we see that in an interval that includes both -1 and $-1 / 3$, the graph of $y=h(x)$ looks something like this:

Zeros of rational functions.

Fact: A simple quotient $\frac{A}{B}=0$ if and only if $A=0($ and $B \neq 0)$.
Conclusion: The zeros of the function $f(x)=\frac{p(x)}{q(x)}$ are the same as the zeros of the polynomial $p(x)$.
Example. The polynomial $p(x)=x^{2}+1$ has no (real) zeros, so $h(x)=\frac{x^{2}+1}{3 x^{2}+4 x+1}$ has no zeros.
Example. The polynomial $p(x)=x^{2}+x-2=(x+2)(x-1)$ has zeros at $x=1$ and $x=-2$, so the rational function $g(x)=\frac{x^{2}+x-2}{5 x+3}$ has zeros at $x=1$ and $x=-2$.
${ }^{(*)} y=g(x)$ is also not defined at $x=-0.6$ (where $5 x+3=0$), and has a vertical asymptote there.

Fact: A rational function $f(x)$ can only change sign, $(+) \rightarrow(-)$ or $(-) \rightarrow(+)$, (i) at a zero or (ii) at a point where it is undefined.
\Rightarrow To determine where the rational function $f(x)$ is positive and where it is negative...
(i) List the zeros of $f(x)$ and points where $f(x)$ is undefined, in ascending order,

$$
a_{1}<a_{2}<\cdots<a_{k}
$$

(ii) Sample the function in each of the intervals

$$
\left(-\infty, a_{1}\right),\left(a_{1}, a_{2}\right), \ldots,\left(a_{k-1}, a_{k}\right),\left(a_{k}, \infty\right)
$$

The sign of $f(x)$ at the sampled point in each interval is the sign of $f(x)$ throughout that interval.

Example. The zeros of the function $g(x)=\frac{x^{2}+x-2}{5 x+3}$ are -2 and 1, and the function is undefined at -0.6 , so we test $g(x)$ in the intervals

$$
(-\infty,-2),(-2,-0.6),(-0.6,1) \text { and }(1, \infty)
$$

$\left(^{*}\right) g(-3)=4 /(-48)<0$, so $g(x)<0$ in $(-\infty,-2)$;
$\left(^{*}\right) g(-1)=(-2) /(-8)>0$, so $g(x)>0$ in $(-2,-0.6)$;
$\left(^{*}\right) g(0)=-2 / 3<0$, so $g(x)<0$ in $(-0.6,1) ;$
$\left(^{*}\right) g(2)=4 / 13>0$, so $g(x)>0$ in $(1, \infty)$
The sign information for $g(x)$ is displayed on the next page.

Remembering that $g(x)$ has a vertical asymptote at $x=-0.6$, using the zeros, the signs above and the y-intercept $=-2 / 3$ for good measure, we can sketch the 'middle' of the graph $y=\frac{x^{2}+x-2}{5 x+3}$:

For this function, the only thing left to analyze is the behavior as $x \rightarrow \pm \infty$, the 'end-behavior of $g(x)$.

End behavior.

The 'end behavior' of a rational function $f(x)=\frac{p(x)}{q(x)}$ (what the function does as $x \rightarrow \infty$ or $x \rightarrow-\infty)$ depends on the degrees of $p(x)$ and $q(x)$. Key observations:
(a) If $k>0$, then $x^{k} \rightarrow \pm \infty$ as $x \rightarrow \pm \infty$. The signs $(+/-)$ depend on the parity of k (odd/even) and whether $x \rightarrow \infty$ or $x \rightarrow-\infty$.
(b) $x^{0}=1$, so $a \cdot x^{0}=a$.
(c) If $k>0$, then $x^{-k}=\frac{1}{x^{k}} \rightarrow 0$ as $x \rightarrow \pm \infty$. The signs don't matter here.

And... drum roll...
(d) $f(x)=\frac{a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}}{b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}}$ behaves like $\left(a_{m} / b_{n}\right) x^{m-n}$ when $|x|$ is large.

Conclusions: If $f(x)=\frac{a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{0}}{b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{0}}$, then
(1) If $m<n$, then $f(x) \rightarrow 0$ as $x \rightarrow \infty$ or $x \rightarrow-\infty$.
(*) In this case the line $y=0$ (the x-axis) is a horizontal asymptote to the graph $y=f(x)$.
(2) If $m=n$, then $f(x) \rightarrow \frac{a_{n}}{b_{n}}$ as $x \rightarrow \infty$ or $x \rightarrow-\infty$.
$\left.{ }^{*}\right)$ In this case the line $y=a_{n} / b_{n}$ is a horizontal asymptote to the graph $y=f(x)$.
(3) If $m>n$, then $f(x) \rightarrow \pm \infty$ as $x \rightarrow \pm \infty$. The signs depend on the parity of $m-n$ and on a_{m} / b_{n}.
(3L) Special case: If $m-n=1$, then $f(x)$ goes to $\pm \infty$ like a linear function.

Example.
(*) The function $f(x)=\frac{1}{x}$ has a vertical asymptote at $x=0$ and a horizontal asymptote at $y=0$ (the axes). Its graph:

Example.

${ }^{(*)}$ The function $h(x)=\frac{2 x^{2}+1}{3 x^{2}+4 x+1}$ has vertical asymptotes at $x=-1$ and $x=-1 / 3$ (red lines) and a horizontal asymptote at $y=2 / 3$ (blue line). Its graph:

Example.

$\left.{ }^{*}\right)$ The function $k(x)=\frac{x^{4}+2 x^{2}-7}{x^{2}-4}$ has vertical asymptotes at $x= \pm 2$ and (red lines) and grows like $x^{4} / x^{2}=x^{2}$ as $x \rightarrow \pm \infty$. It's graph:

Oblique asymptotes.

If $f(x)=\frac{p(x)}{q(x)}=\frac{a_{n} x^{n}+\cdots+a_{0}}{b_{n-1} x^{n-1}+\cdots b_{0}}$, so $\operatorname{deg}(p)-\operatorname{deg}(q)=1$, then dividing $p(x)$ by $q(x)$ with remainder (using long division), we can find...
(i) a linear function $m x+d$ (the quotient) and
(ii) a polynomial $c_{n-2} x^{n-2}+\cdots+c_{0}$ (the remainder)
such that

$$
\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}}{b_{n-1} x^{n-1}+\cdots b_{0}}=(m x+d)+\frac{c_{n-2} x^{n-2}+\cdots+c_{0}}{b_{n-1} x^{n-1}+\cdots b_{0}}
$$

$\left(^{*}\right)$ If $|x|$ is very large, then $\frac{c_{n-2} x^{n-2}+\cdots+c_{0}}{b_{n-1} x^{n-1}+\cdots b_{0}} \approx 0$ (why?).
$\left(^{*}\right)$ So, if $|x|$ is very large, then

$$
\frac{a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}}{b_{n-1} x^{n-1}+\cdots b_{0}} \approx m x+d
$$

The line $y=m x+d$ is called an oblique asymptote to the graph of $y=f(x)$.

Example. The numerator of $g(x)=\frac{x^{2}+x-2}{5 x+3}$ has degree 2 and the denominator has degree 1 , so $y=g(x)$ has an oblique asymptote. To find the equation of the asymptote, we divide $x^{2}+x-2$ by $5 x+3$:

$$
5 x+3) \begin{array}{r}
\frac{1}{5} x+\frac{2}{25} \\
\frac{x^{2}+x-2}{}-x^{2}-\frac{3}{5} x \\
\frac{\frac{2}{5} x}{}-2 \\
\frac{-\frac{2}{5} x-\frac{6}{25}}{-\frac{56}{25}}
\end{array}
$$

The quotient is $\frac{1}{5} x+\frac{2}{25}$, so the oblique asymptote to $y=g(x)$ is the line

$$
y=\frac{1}{5} x+\frac{2}{25}
$$

The graph of $y=\frac{x^{2}+x-2}{5 x+3}$ with vertical asymptote $x=-0.6$ (red) and oblique asymptote $y=\frac{1}{5} x+\frac{1}{25}$ (blue):

