
Rational functions

Definition: A rational function is the quotient of two polynomials:

f(x) =
amxm + am−1x

m−1 + · · ·+ a0
bnxn + bn−1xn−1 + · · ·+ b0

=
p(x)

q(x)
.

Examples:

f(x) =
3x + 2

4x3 + 5x2 − 1
, g(x) =

x2 + x− 2

5x + 3
and h(x) =

2x2 + 1

3x2 + 4x + 1
.

Important characteristics:

(a) Domain of definition.

(a) ⇒ behavior near points where the function is undefined.

(b) Zeros.

(a) and (b) ⇒ intervals where the function is positive and negative.

(c) End behavior (as x→ ±∞).
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Domain of defintion.

(*) Polynomials are defined on the entire real line.

(*) Quotients are defined wherever the denominator is not zero.

Conclusion: The rational function y =
p(x)

q(x)
is defined at all points

where q(x) 6= 0.

Example. Find the domain of

h(x) =
2x2 + 1

3x2 + 4x + 1
.

(*) Zeros of 3x2 + 4x + 1 = (3x + 1)(x + 1): x1 = −1 and x2 = −1/3.

⇒ Domain(h(x)) = {x|x 6= −1 and x 6= −1/3}.
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Behavior near points where the rational function is undefined.

(*) If q(a) = 0, so f(x) = p(x)/q(x) is undefined at x = a, then f(x)

will usually tend to ±∞ as x gets closer to a.

Example. The function h(x) =
2x2 + 1

3x2 + 4x + 1
is not defined at x = −1.

(*) The numerator, 2x2 + 1 > 0 for all x.

(*) The denominator, 3x2 + 4x + 1 > 0 if x < −1 or x > −1/3

⇒ h(x) > 0 if x < −1 or x > −1/3

(*) 3x2 + 4x + 1 < 0 if −1 < x < −1/3.

⇒ h(x) < 0 if −1 < x < −1/3.

Conclusions:

(*) If x ≈ −1 and x < −1, then h(x) > 0 and |h(x)| is very large

⇒ h(x)→ +∞ to the left of −1.

(*) If x ≈ −1 and x > −1, then h(x) < 0 and |h(x)| is very large

⇒ h(x)→ −∞ to the right of −1.
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In the vicinity of x = −1, the graph of y = h(x) looks like this:
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In the vicinity of x = −1, the graph of y = h(x) looks like this:

-1.5 -1.25 -1 -0.75

-50

-25

25

50

The line x = −1 is called a vertical asymptote to the graph y = h(x).

(*) The graph of a rational function cannot cross a vertical asymptote.
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A similar analysis shows that h(x) → +∞ to the right of −1/3 and

h(x)→ −∞ to the left of −1/3. In the vicinity of x = −1/3, the graph

of the function y = h(x) looks like this:

-0.5 -0.4 -0.3 -0.2 -0.1

-50

-25

25

50

The line x = −1/3 is another vertical asymptote to the graph y = h(x).
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Zooming out a little, we see that in an interval that includes both −1

and −1/3, the graph of y = h(x) looks something like this:
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Zeros of rational functions.

Fact: A simple quotient
A

B
= 0 if and only if A = 0 (and B 6= 0).

Conclusion: The zeros of the function f(x) =
p(x)

q(x)
are the same as

the zeros of the polynomial p(x).

Example. The polynomial p(x) = x2 + 1 has no (real) zeros, so

h(x) =
x2 + 1

3x2 + 4x + 1
has no zeros.

Example. The polynomial p(x) = x2 + x− 2 = (x+ 2)(x− 1) has zeros

at x = 1 and x = −2, so the rational function g(x) =
x2 + x− 2

5x + 3
has

zeros at x = 1 and x = −2.

(*) y = g(x) is also not defined at x = −0.6 (where 5x+ 3 = 0), and has

a vertical asymptote there.

7



Fact: A rational function f(x) can only change sign, (+) → (−) or

(−)→ (+), (i) at a zero or (ii) at a point where it is undefined.

⇒ To determine where the rational function f(x) is positive and where

it is negative...

(i) List the zeros of f(x) and points where f(x) is undefined, in ascending

order,

a1 < a2 < · · · < ak.

(ii) Sample the function in each of the intervals

(−∞, a1), (a1, a2), . . . , (ak−1, ak), (ak,∞).

The sign of f(x) at the sampled point in each interval is the sign of f(x)

throughout that interval.
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Example. The zeros of the function g(x) =
x2 + x− 2

5x + 3
are −2 and 1,

and the function is undefined at −0.6, so we test g(x) in the intervals

(−∞,−2), (−2,−0.6), (−0.6, 1) and (1,∞)

(*) g(−3) = 4/(−48) < 0, so g(x) < 0 in (−∞,−2);

(*) g(−1) = (−2)/(−8) > 0, so g(x) > 0 in (−2,−0.6);

(*) g(0) = −2/3 < 0, so g(x) < 0 in (−0.6, 1);

(*) g(2) = 4/13 > 0, so g(x) > 0 in (1,∞)

The sign information for g(x) is displayed on the next page.
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Remembering that g(x) has a vertical asymptote at x = −0.6, using the

zeros, the signs above and the y-intercept = −2/3 for good measure, we

can sketch the ‘middle’ of the graph y =
x2 + x− 2

5x + 3
:
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For this function, the only thing left to analyze is the behavior as

x→ ±∞, the ‘end-behavior of g(x).
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End behavior.

The ‘end behavior’ of a rational function f(x) =
p(x)

q(x)
(what the function

does as x→∞ or x→ −∞) depends on the degrees of p(x) and q(x).

Key observations:

(a) If k > 0, then xk → ±∞ as x → ±∞. The signs (+/−) depend on

the parity of k (odd/even) and whether x→∞ or x→ −∞.

(b) x0 = 1, so a · x0 = a.

(c) If k > 0, then x−k =
1

xk
→ 0 as x → ±∞. The signs don’t matter

here.

And... drum roll...

(d) f(x) = amxm+am−1x
m−1+···+a0

bnxn+bn−1xn−1+···+b0
behaves like (am/bn)xm−n when |x|

is large.
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Conclusions: If f(x) =
amxm + am−1x

m−1 + · · ·+ a0
bnxn + bn−1xn−1 + · · ·+ b0

, then

(1) If m < n, then f(x)→ 0 as x→∞ or x→ −∞.

(*) In this case the line y = 0 (the x-axis) is a horizontal asymptote

to the graph y = f(x).

(2) If m = n, then f(x)→ an
bn

as x→∞ or x→ −∞.

(*) In this case the line y = an/bn is a horizontal asymptote to the

graph y = f(x).

(3) If m > n, then f(x) → ±∞ as x → ±∞. The signs depend on the

parity of m− n and on am/bn.

(3L) Special case: If m − n = 1, then f(x) goes to ±∞ like a linear

function.
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Example.

(*) The function f(x) =
1

x
has a vertical asymptote at x = 0 and a

horizontal asymptote at y = 0 (the axes). Its graph:
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Example.

(*) The function h(x) =
2x2 + 1

3x2 + 4x + 1
has vertical asymptotes at x = −1

and x = −1/3 (red lines) and a horizontal asymptote at y = 2/3 (blue

line). Its graph:
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Example.

(*) The function k(x) =
x4 + 2x2 − 7

x2 − 4
has vertical asymptotes at x = ±2

and (red lines) and grows like x4/x2 = x2 as x→ ±∞. It’s graph:
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Oblique asymptotes.

If f(x) =
p(x)

q(x)
=

anx
n + · · ·+ a0

bn−1xn−1 + · · · b0
, so deg(p) − deg(q) = 1, then

dividing p(x) by q(x) with remainder (using long division), we can find...

(i) a linear function mx + d (the quotient) and

(ii) a polynomial cn−2x
n−2 + · · ·+ c0 (the remainder)

such that

anx
n + an−1x

n−1 + · · ·+ a0
bn−1xn−1 + · · · b0

= (mx + d) +
cn−2x

n−2 + · · ·+ c0
bn−1xn−1 + · · · b0

.

(*) If |x| is very large, then
cn−2x

n−2 + · · ·+ c0
bn−1xn−1 + · · · b0

≈ 0 (why?).

(*) So, if |x| is very large, then

anx
n + an−1x

n−1 + · · ·+ a0
bn−1xn−1 + · · · b0

≈ mx + d.

The line y = mx + d is called an oblique asymptote to the graph of

y = f(x).
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Example. The numerator of g(x) = x2+x−2
5x+3 has degree 2 and the

denominator has degree 1, so y = g(x) has an oblique asymptote. To

find the equation of the asymptote, we divide x2 + x− 2 by 5x + 3:

1
5x + 2

25

5x + 3
)

x2 + x − 2

− x2 − 3
5x

2
5x − 2

− 2
5x−

6
25

− 56
25

The quotient is
1

5
x +

2

25
, so the oblique asymptote to y = g(x) is the

line

y =
1

5
x +

2

25
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The graph of y =
x2 + x− 2

5x + 3
with vertical asymptote x = −0.6 (red)

and oblique asymptote y = 1
5x + 1

25 (blue):
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