Rational functions

Definition: A rational function is the quotient of two polynomials:

$$f(x) = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_0} = \frac{p(x)}{q(x)}.$$

Examples:

$$f(x) = \frac{3x+2}{4x^3+5x^2-1}, \quad g(x) = \frac{x^2+x-2}{5x+3} \text{ and } h(x) = \frac{2x^2+1}{3x^2+4x+1}.$$

Important characteristics:

(a) Domain of definition.

(a) \Rightarrow behavior near points where the function is undefined.

(b) Zeros.

(a) and (b) \Rightarrow intervals where the function is positive and negative.

(c) End behavior (as $x \to \pm \infty$).

Domain of definiton.

(*) Polynomials are defined on the entire real line.

(*) Quotients are defined wherever the denominator is *not zero*.

Conclusion: The rational function $y = \frac{p(x)}{q(x)}$ is defined at all points where $q(x) \neq 0$.

Example. Find the domain of

$$h(x) = \frac{2x^2 + 1}{3x^2 + 4x + 1}.$$

(*) Zeros of $3x^2 + 4x + 1 = (3x + 1)(x + 1)$: $x_1 = -1$ and $x_2 = -1/3$.

 $\Rightarrow \text{Domain}(h(x)) = \{x | x \neq -1 \text{ and } x \neq -1/3\}.$

Behavior near points where the rational function is undefined. (*) If q(a) = 0, so f(x) = p(x)/q(x) is undefined at x = a, then f(x) will usually tend to $\pm \infty$ as x gets closer to a.

Example. The function $h(x) = \frac{2x^2 + 1}{3x^2 + 4x + 1}$ is not defined at x = -1. (*) The numerator, $2x^2 + 1 > 0$ for all x. (*) The denominator, $3x^2 + 4x + 1 > 0$ if x < -1 or x > -1/3 $\Rightarrow h(x) > 0$ if x < -1 or x > -1/3(*) $3x^2 + 4x + 1 < 0$ if -1 < x < -1/3. $\Rightarrow h(x) < 0 \text{ if } -1 < x < -1/3.$ **Conclusions:** (*) If $x \approx -1$ and x < -1, then h(x) > 0 and |h(x)| is very large $\Rightarrow h(x) \rightarrow +\infty$ to the left of -1. (*) If $x \approx -1$ and x > -1, then h(x) < 0 and |h(x)| is very large $\Rightarrow h(x) \rightarrow -\infty$ to the right of -1.

A similar analysis shows that $h(x) \to +\infty$ to the right of -1/3 and $h(x) \to -\infty$ to the left of -1/3. In the vicinity of x = -1/3, the graph of the function y = h(x) looks like this:

Zooming out a little, we see that in an interval that includes both -1 and -1/3, the graph of y = h(x) looks something like this:

Zeros of rational functions.

Fact: A simple quotient
$$\frac{A}{B} = 0$$
 if and only if $A = 0$ (and $B \neq 0$).

Conclusion: The zeros of the function $f(x) = \frac{p(x)}{q(x)}$ are the same as the zeros of the polynomial p(x).

Example. The polynomial $p(x) = x^2 + 1$ has no (real) zeros, so $h(x) = \frac{x^2 + 1}{3x^2 + 4x + 1}$ has no zeros.

Example. The polynomial $p(x) = x^2 + x - 2 = (x+2)(x-1)$ has zeros at x = 1 and x = -2, so the rational function $g(x) = \frac{x^2 + x - 2}{5x + 3}$ has zeros at x = 1 and x = -2.

(*) y = g(x) is also not defined at x = -0.6 (where 5x + 3 = 0), and has a vertical asymptote there.

Fact: A rational function f(x) can only *change sign*, $(+) \rightarrow (-)$ or $(-) \rightarrow (+)$, (i) at a zero or (ii) at a point where it is undefined.

 \Rightarrow To determine where the rational function f(x) is positive and where it is negative...

(i) List the zeros of f(x) and points where f(x) is undefined, in ascending order,

$$a_1 < a_2 < \cdots < a_k.$$

(ii) Sample the function in each of the intervals

$$(-\infty, a_1), (a_1, a_2), \dots, (a_{k-1}, a_k), (a_k, \infty).$$

The sign of f(x) at the sampled point in each interval is the sign of f(x) throughout that interval.

Example. The zeros of the function $g(x) = \frac{x^2 + x - 2}{5x + 3}$ are -2 and 1, and the function is undefined at -0.6, so we test g(x) in the intervals

$$(-\infty, -2), (-2, -0.6), (-0.6, 1) \text{ and } (1, \infty)$$

(*)
$$g(-3) = 4/(-48) < 0$$
, so $g(x) < 0$ in $(-\infty, -2)$;
(*) $g(-1) = (-2)/(-8) > 0$, so $g(x) > 0$ in $(-2, -0.6)$;
(*) $g(0) = -2/3 < 0$, so $g(x) < 0$ in $(-0.6, 1)$;
(*) $g(2) = 4/13 > 0$, so $g(x) > 0$ in $(1, \infty)$

The sign information for g(x) is displayed on the next page.

End behavior.

The 'end behavior' of a rational function $f(x) = \frac{p(x)}{q(x)}$ (what the function does as $x \to \infty$ or $x \to -\infty$) depends on the degrees of p(x) and q(x). Key observations:

(a) If k > 0, then $x^k \to \pm \infty$ as $x \to \pm \infty$. The signs (+/-) depend on the parity of k (odd/even) and whether $x \to \infty$ or $x \to -\infty$.

(b)
$$x^0 = 1$$
, so $a \cdot x^0 = a$.

(c) If k > 0, then $x^{-k} = \frac{1}{x^k} \to 0$ as $x \to \pm \infty$. The signs don't matter here.

And... drum roll... (d) $f(x) = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_0}{b_n x^n + b_{n-1} x^{n-1} + \dots + b_0}$ behaves like $(a_m/b_n) x^{m-n}$ when |x| is large.

- (3) If m > n, then $f(x) \to \pm \infty$ as $x \to \pm \infty$. The signs depend on the parity of m n and on a_m/b_n .
- (3L) **Special case:** If m n = 1, then f(x) goes to $\pm \infty$ like a linear function.

Example.

(*) The function $f(x) = \frac{1}{x}$ has a vertical asymptote at x = 0 and a horizontal asymptote at y = 0 (the axes). Its graph:

Example.

(*) The function $h(x) = \frac{2x^2 + 1}{3x^2 + 4x + 1}$ has vertical asymptotes at x = -1 and x = -1/3 (red lines) and a horizontal asymptote at y = 2/3 (blue line). Its graph:

Example.

(*) The function $k(x) = \frac{x^4 + 2x^2 - 7}{x^2 - 4}$ has vertical asymptotes at $x = \pm 2$ and (red lines) and grows like $x^4/x^2 = x^2$ as $x \to \pm \infty$. It's graph:

Oblique asymptotes.

If $f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + \dots + a_0}{b_{n-1} x^{n-1} + \dots + b_0}$, so deg(p) - deg(q) = 1, then dividing p(x) by q(x) with remainder (using long division), we can find... (i) a linear function mx + d (the *quotient*) and (ii) a polynomial $c_{n-2} x^{n-2} + \dots + c_0$ (the *remainder*) such that

$$\frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_{n-1} x^{n-1} + \dots + b_0} = (mx+d) + \frac{c_{n-2} x^{n-2} + \dots + c_0}{b_{n-1} x^{n-1} + \dots + b_0}$$

(*) If
$$|x|$$
 is very large, then $\frac{c_{n-2}x^{n-2} + \dots + c_0}{b_{n-1}x^{n-1} + \dots + b_0} \approx 0$ (why?).

(*) So, if |x| is very large, then

$$\frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0}{b_{n-1} x^{n-1} + \dots + b_0} \approx mx + d.$$

The line y = mx + d is called an **oblique** asymptote to the graph of y = f(x).

Example. The numerator of $g(x) = \frac{x^2+x-2}{5x+3}$ has degree 2 and the denominator has degree 1, so y = g(x) has an oblique asymptote. To find the equation of the asymptote, we divide $x^2 + x - 2$ by 5x + 3:

$$\frac{\frac{1}{5}x + \frac{2}{25}}{5x + 3} \xrightarrow{x^2 + x - 2} \\
- x^2 - \frac{3}{5}x \\
\frac{\frac{2}{5}x - 2}{-\frac{2}{5}x - \frac{6}{25}} \\
- \frac{56}{25}$$

The quotient is $\frac{1}{5}x + \frac{2}{25}$, so the oblique asymptote to y = g(x) is the line

$$y = \frac{1}{5}x + \frac{2}{25}$$

